Summary of Table Value Standards and Assessment Criteria for Aquatic Life and Metals

> Peter Butler, Ph.D. Bonita Peak CAG April 26, 2023

Two Issues:

- ▶ What Are Table Value Standards (TVS) for Metals to Protect Aquatic Life.
- ▶ How is Data Assessed to See if Standards Are Being Met.

There Are TVS for Different Parameters and Different Classified Uses.

- Uses Include: aquatic life, agriculture, domestic water supply, recreation, and wetlands.
- Parameters Include: physical and biological (pH, D.O. temperature), inorganic (cyanide, sulfate, fluoride, chloride, ammonia, etc.), and metals (zinc, cadmium, iron, etc.).
- TVS are default site specific standards designed to be protective of uses. Individualized, site specific standards can be adopted if TVS are not feasible or appropriate.
- Aquatic-life, metal TVS are developed to protect 95% of aquatic species that are thought to exist or should exist in a water body.
- Side note: Organic chemicals have statewide standards that are applied throughout the state.

N

						and the second se	
	TAB	LE III METAL PARAMETERS (conce	entration in µg/L)				
Metal ⁽¹⁾	Aquatic Li	Agriculture ⁽²⁾	Domestic Water Supply ⁽²⁾	Water + Fish ⁽⁷⁾	Fish Ingestion ⁽¹⁰⁾		
	ACUTE	CHRONIC	CHRONIC		CHRONIC	CHRONIC	
Mercury		FRV(fish) ⁽⁶⁾ = 0.01 (total recoverable)		2.0 ^(E) (acute)	- Annual Carl		
lolybdenum			300 ^{(O)(15)}	210 (chronic)			
Nickel	e ^{(0.846*In(hardness)+2.253)}	e ^{(0.846*In(hardness)+0.0554)}	200 ^(B)	100 ^(E) (chronic)	610	4,600	
Selenium ⁽⁹⁾	18.4	4.6	20 ^(B,D)	50 ^(E) (chronic)	170	4,200	
Silver	0.5*e ^{(1.72*In(hardness)-6.52)}	$e^{(1.72*\ln(hardness)-9.06)}$ Trout ⁽¹⁹⁾ = $e^{(1.72*\ln(hardness)-10.51)}$		100 ^(F) (acute)	existence	proving starting	
Thallium ⁽¹⁸⁾		15 ^(C)		0.5 (chronic)	0.24	0.47	
Uranium ⁽¹⁶⁾	e ^{(1.1021*In(hardness)+2.7088)}	e ^{(1.1021*In(hardness)+2.2382)}		16.8 – 30 ⁽¹³⁾ (chronic)	albahar kur	nana anga dan	
Zinc	0.978*e ^{(0.9094*ln(hardness)+0.9095)}	$0.986^{*}e^{(0.9094^{*}ln(hardness)+0.6235)}$ Sculpin ⁽¹⁴⁾ = $e^{(2.140^{*}ln(hardness)-5.084)}$	2000 ^(B)	5,000 ^(F) (chronic)	7,400	26,000	
Note: Capital letters in parentheses refer to references listed in section 31.16(3); numbers in parentheses refer to Table III footnotes.							

Metal TVS for Aquatic Life

- For most metals, the dissolved fraction is what causes the toxicity in aquatic life.
- The dissolved fraction is defined as particles that will pass through a 0.45 micron filter. The total amount of metal in a sample is that which has not been filtered.
- For pH's we see in the Animas Basin, almost all of the zinc, cadmium, and manganese is in the dissolved fraction.
- For other metals like iron, aluminum, copper, and lead, the dissolved fraction of the total is quite small at a pH of 7.
- For most metals, the higher the pH, the smaller the dissolved fraction. With a higher pH, metals start to participate.
- Some aquatic-life metal TVS apply to the total amount of metal such as iron and aluminum.

Data Assessment to Determine if Standard is Attained

- Sample data that has been collected within seven days of each other is averaged and treated as one sample. This is done to reduce the bias a short period of time might have over a longer-term data set.
- If the acute, aquatic-life metal TVS is exceeded more than once every three years, the standard is out of attainment.
- The chronic, aquatic-life metal TVS is compared to the 85th percentile of the data for dissolved metals and the 50th percentile (median) of the data for total metals to determine attainment. This comparison can be done two different ways.

First Method Using 85th Percentile

		Animas below C	k (HQ=	(HQ=Zn Concen/Chronic Zn TVS		
Date	Hardness	Zinc Concentration	Chronic Zinc TVS	Acute Zinc TVS	Hazard Quotient	
1/9/202	2 21	11 30	<mark>)6</mark> 239	316	1.28	
2/6/202	2 22	2 <mark>7</mark> 39	255	337	1.55	
3/6/202	2 18	3 <mark>3</mark> 32	23 210	277	1.54	
4/11/202	2 12	25 17	7 <mark>8</mark> 148	196	1.20	
5/7/202	2 58.	.1	<mark>)3</mark> 74	98	1.26	
6/11/202	2 64.	.5 11	.5 81	107	1.41	
7/5/202	2 88.	.7 99	.8 109	143	0.92	
8/3/202	2 10	00 13	<mark>31</mark> 121	160	1.08	
9/10/202	2 15	53 15	57 178	236	0.88	
10/9/202	2 12	20 16	5 <mark>0</mark> 143	189	1.12	
11/6/202	2 16	52 2 1	188	248	1.13	
12/1/202	2 18	35 35	51 212	280	1.66	

Average	85th	TVS Based on
Hardness	Percentile	Average Hardness
140	333	164

Second Method Using 85th Percentile

Animas below Confluence with Cascade Creek

Date	Hardness		Zinc Concentration	Chronic Zinc TVS	Exce	edance?
	1/9/2022	211	3	06	239	yes
	2/6/2022	227	3	97	255	yes
	3/6/2022	183	3	23	210	yes
	4/11/2022	125	1	78	148	yes
	5/7/2022	58.1		93	74	yes
	6/11/2022	64.5	1	15	81	yes
	7/5/2022	88.7	99	9.8	109	
	8/3/2022	100	1	31	121	yes
	9/10/2022	153	1	57	178	
	10/9/2022	120	1	60	143	yes
	11/6/2022	162	2	13	188	yes
	12/1/2022	185	3	51	212	yes

2/12 Non-Exceedances or 17% of the time

Load Reductions Needed to Meet TVS below Cascade Creek

100

Below Confluence with Cascade Creek

			Reduction				
			in Zn load	Dis Zn conc.			
		Dis.Zn	to Reach	with load			Zn load reduction (lbs/day)
	Dis Zn	load	Chron. TVS	reduction			
Date	Conc.	(lbs/day)	(lbs/day)	(ug/l)	Chronic Zinc TVS	Exceedance?	
1/9/2022	2 306	5 78	8 17	-84	239)	
2/6/2022	2 397	109	9 39	33	255	5	
3/6/2022	2 323	123	3 43	61	210)	
4/11/2022	2 178	3 27	5 46	113	148	3	
5/7/2022	<u> </u>	1028	3 210	84	74	l yes	
6/11/2022	2 115	552	2 162	94	81	L yes	
7/5/2022	2 99.8	3 293	1 -26	66	109)	
8/3/2022	2 131	359	9 27	95	121	L	
9/10/2022	2 157	14	7 -20	50	178	3	
10/9/2022	2 160	279	9 30	103	143	3	
11/6/2022	2 213	184	4 22	97	188	3	
12/1/2022	2 351	16	7 66	140	212	,	

10/12 Non-Exceedances or 83% of the time

85th Percentile **106**