€PA

Surface Water Remedy Community Workshop Bonita Peak Mining District Superfund Site March 29, 2023

Workshop Agenda

- Welcome & Introduction
- Purpose and Goals
- Presentations
- Listening/Feedback Sessions

Welcome & Introductions

Workshop Purpose

Engage the community *early in the process* on water treatment options for contaminated surface water at BPMD.

Workshop Goals

- **Engage.** Dialogue with community about active water treatment as a potential long-term remedy to achieve water quality goals.
- **Understand**. Listen to community concerns regarding water treatment options and gather information to aid in future evaluations.
- **Be transparent**. Share current actions and a road map to decision.

Part 1. Presentation

- Watershed Loading
- Reductions Needed
- Discussion of Technologies and Uncertainties
- Road Map to a Decision

Goals for Response Actions

- Goal 1. "Improve water quality with a focus on mine drainage."
- **Goal 2.** "Stabilize source areas with a focus on solid media."
- Goal 3. "Minimize unplanned releases."

Objectives to Address Goal 1

- "Identify achievable actions necessary to meet Table Value Standards (TVS) in the Animas River at a location downstream of Elk Creek."
- *"Improve water quality to meet or exceed State water quality goals in priority reaches."*

Priority Reach 1

- "Undertake activities necessary to meet TVS in the Animas River at a location below Elk Creek (with the possible exception of aluminum due to high background concentrations)."
- This objective will be primarily attained by reducing loading to surface water through a combination of:
 - Remediation at individual mine source areas;
 - Centralized treatment of Upper Cement Creek sources

€PA

Terminology

- Concentration mass of metal per unit volume. Compare to Table Value Standards to determine potential impairment
- Load mass of metal per unit time. Used to evaluate rates of treatment needed to reduce concentrations

Load = Concentration * Flow

Concentration is what the aquatic life experiences and basis of Table Value Standards (TVS)

Load is used to calculate needed reductions of metals

Metals Loading From Mines

In order to evaluate the effects of cleaning up a source such as a mine, the basic loading math is used to estimate the new metals load and concentration.

SEPA

Load = Concentration * Flow Add loads 1 + 16 = 17 Concentration = Load / Flow

U.S. Environmental Protection Agency

Focus on Zinc

- Zinc is used in the Loading Tool because:
 - Widespread contaminant at BPMD
 - Relatively conservative in water
 - Generally, addressing zinc contamination will also address other metals
 - Loading tool cannot account for precipitation reactions that remove metals from surface water
 - such as ferricrete or aluminum hydroxysulfate
 - Zinc is a driver for aquatic life
- Manganese, cadmium, lead & aluminum* also of concern

U.S. Environmental Protection Agency

Focus on Base Loads from Fall Sampling

- Loading Tool uses base flows (fall dataset)
- Why?
- Annual low flow sampling conducted by EPA from 2015-2021
- Consistently in October during base flow
- Relatively stable flow conditions
- Best access to high elevation sites
- Able to collect all sample locations in a short time frame for quasi synoptic sampling
- Runoff sampling is highly variable (big variability in June)
 - discharge is commonly not measured for safety reasons & not sufficient as a synoptic data set
 - Loads from runoff may present opportunities for source control?

Sources of Contamination: Focus on Zinc

U.S. Environmental Protection Agency

Metals Source	Туре	Drainage	Median zinc load lb./day	
North Star	Adit	Mineral	3.9	
Bandora	Adit Mineral		3.7	
Koehler	Adit	Mineral	3.1	
Paraside	Adit	Mineral	2.3	
	Mineral largest sources		13	
Gold King Level 7	Adit	Cement	159	
Red and Bonita	Adit	Cement	53	
American Tunnel	Adit Cement		20	
Mogul	Adit Cement		16	
Natalie/Occidental	cidental Adit Cement		4.1	
Grand Mogul	Vlogul Adit Ce		1.6	
Anglo-Saxon	axon Adit		1.3	
	Upper Cement sources		255	
	Upper Cement sources less Gold King		96	
Mayflower Mill area Impoundments		Animas	52	
Howardsville	Impoundments Anim		27	
	Howardsville + Mayflower Mill		79	
California Creek				
above Silver Chord	Reach	Animas	11	
Silver Wing/Burns	mine area	Animas	10	
London	Adit	Animas	2.9	
Bagley Tunnel	Adit	Animas	1.6	
	Other Animas Sources		26	

For Discussion Only, Not for Publication

Zinc Concentrations in Animas River

Colorado River Watch Monthly Data 2018-2022 and CAG Data 2019-2021

U.S. Environmental Protection Agency

A72 as a Surrogate Point of Compliance

- Priority Reach 1 begins at Elk Creek
- Station A73B is difficult to access. A72 has a larger data set.
- A72 is a good starting point at POC
- May need to consider downstream locations with lower hardness = lower TVS values

A72 Zinc Concentrations

Colorado River Watch Monthly Data 2018-2022

U.S. Environmental Protection Agency

A72 Zinc Loads

Colorado River Watch Monthly Data 2018-2022 USGS Discharge used to Calculate Loads

U.S. Environmental Protection Agency

20

For Discussion Only, Not for Publication

A72 Zinc Loads

EPA Annual Fall Data 2015-2021

	Median	Median	Median
	Dissolved Zinc	Discharge	Dissolved Zn
Station	μg/L	cfs	load lb./day
A72	560	102	276

Refining the range of removal needed: Goal 1 – Zinc at A72 (Surrogate) Using base flows (fall data set):

Refining the range of removal needed: Goal 1 – Zinc below Elk Creek Conservative Reduction Target (year round):

Wate	r Quality Goal:	No more than one exceedance of zinc TVS per 3 years		Estimate load reduction needed			70%	
	Existing Load lb./day	xisting Load at A72 Reduction Nee lb./day lb./day		Needed ay	A72 Ar	Re nbie	sulting nt Load It	o./day
	276	-	193 (7	0%)=			83	

U.S. Environmental Protection Agency

Cement Creek Only-Adit Loading

Adit	Median zinc Ioad Ib./day	Main point: -Treating the
Red and Bonita	53	discharges in the upper
American Tunnel	20	Cement Creek area,
Mogul	16	including Gold King
Natalie/Occidental	4.1	Level 7, will still require
Grand Mogul	1.6	additional load
Total	95	reductions to meet IVS
49% Reduction needed	135	in the Animas
Shortfall	40	-Spring flows will need
70 % Reduction needed	193	additional source
Shortfall	98	reductions

U.S. Environmental Protection Agency

For Discussion Only, Not for Publication

What other zinc load removal is feasible?

Tailings & waste rock sources will have less than complete capture

- Howardsville 27 lb./day
 - Future remedies might reduce by 70-80% (22 lb./day)
- Mayflower Mill 52 lb./day
 - Future remedies might reduce by 70-80% (42 lb/day)
- Total 64 lb./day possible reduction
- Base flow: may meet overall zinc load reductions
- Spring melt: highly variable; additional loading from erosion. Look for additional non-point load reduction

Take Aways

- Load reduction needs are different during base flows (fall) and spring runoff
- A72 can be used as a surrogate for Priority 1 but locations further downstream may have lower hardness increasing the zinc removal needs
- Will continue to refine water quality goals and load reductions

Listening/Feedback Session

Surface Water Remedy Options

- Localized
- Centralized

Localized Source Controls

Examples

- Plugging Mine Workings (Bulkheads)*
- Cap and Cover
- Containment Barriers
- Diversion
- Excavation and Consolidation
- In-situ Passive Treatment
- Stabilization/Solidification
- Others

Localized vs. Centralized Strategies

- Localized source controls
 - Uncertain
 performance
 - May not reduce
 sufficient loading
- Centralized treatment
 - Can be designed to remove 99.9% of zinc

Centralized Treatment Primary Types

- Passive (or Semi-Passive) Treatment
- Active Treatment

Passive or Semi-Passive Treatment Methods

- Constructed wetlands
- Sulfate reducing bioreactors
- Anoxic limestone drains
- Open limestone channel

- In-situ treatment inside flooded mine workings
- Aeration channels
- Settling ponds

Passive or Semi-Passive Treatment

- Relies on a variety of mechanisms adsorption, filtration, sedimentation, metal oxides/hydroxides, precipitation of metal sulfides, microbial metabolism, and plant uptake.
- Slow process, therefore requires long retention time/large footprint
- Sensitive to changes in water quality and temperature
- Will require solids management (often ignored)

Active Treatment Methods

- Chemical Precipitation (lime treatment)
- Membranes (reverse osmosis, ultra filtration)
- Biological (membrane or fluidized bed reactor, etc.)
- Ion Exchange
- Electrocoagulation
- Proprietary Media or Technologies

Active Treatment

- Can use similar mechanisms as passive for metals removal and/or more complex technologies
- But has active, precise ulletcontrol of flow rates, chemical additions, & water residence times
- Active monitoring to adjust as needed
- Can be designed to target specific contaminants
- Smaller foot print: controlled conditions = faster reaction
- times

Centralized Treatment Plants

For Discussion Only, Not for Publication

Technologies	Advantages	Disadvantages
Active Treatment	 <u>Relatively small footprint</u> (size constraint) Proven treatment technology. Generally exceeds performance of passive approach. <u>Direct control over</u> treatment operations to achieve discharge limits. Address changes in flow and concentration effectively. 	 Higher capital and operation/maintenance costs. Industrial look of facility (but can use more historic facades). Generates sludge to be disposed offsite.
Passive (or Semi- Passive) Treatment	 Typically, low operating and capital costs (depending on flow rates) Lower carbon footprint. Operates for periods of time unsupervised. More natural look. 	 <u>Requires large footprint to operate (size constraint).</u> Less control to reliability. achieve effluent standards May not fully function in winter conditions. Generates sludge to be disposed offsite.

U.S. Environmental Protection Agency

37

For Discussion Only, Not for Publication

Major Technology Constraint: Footprint Sizing

Site	Туре	Avg Flow	Design Peak Flow	Treatment Area
Rico Argentine	Semi- Passive	400	600	35 acres
Upper Blackfoot	Passive	65	130	3 acres
Upper Blackfoot	Active	100	180	0.5 acre
Bunker Hill	Active	3,500	8,000	6 acres
Argo Tunnel	Active	250	700	1 acre
Summitville	Active	1,600	2,100	1.5 acres
Eagle Mine	Active	210	300	10 acres**

U.S. Environmental Protection Agency

Rough estimate of facility size for treatment

- Rough Estimate Upper Cement adits including Gold King:
- 1500 avg, 2000 peak gpm
- Similar to Summitville rate: 1.5 acres for plant
- 4x Rico treatment rate: 60 acres semipassive

Active Treatment Example

Summitville

Flow Rate:

- 1,600 gpm (design)
- 2,100 gpm (peak)Footprint:
- 85 x 160 ft building
- 1.5 acre trtmt area
- *28 acre water storage pond prior to trtmt

Passive Treatment Example

Rico

Flow Rate:

- 400 gpm avg
- 600 gpm max effective

Footprint:

• 35 acres

Potential Treatment Technology

Screening based on Technical Implementability

Active Treatment – feasible

- Proven effective year-round technology
- Measurable success at several locations in Colorado
- Relatively small surface area requirements
- More implementable in mountainous community than passive or semi-passive that requires a much larger surface area

Centralized Passive Treatment – not feasible

- Size not feasible in the area
- Less control of outcomes
- May be feasible for small remote sources elsewhere at Site

Active Treatment Considerations

- Influent water management storage & flow rate control
- Conveyance pipelines & pumping & maintenance
- Chemical deliveries
- Equipment maintenance & replacement
- Media/filter replacement
- Power reliability
- Remote operation reliability
- Treatment generated solids
 management & disposal

Next Step in Community Engagement

Interviews with Neutral Facilitator Pam Avery

Listening/Feedback Session

Summary & Wrap Up

Thank You!

U.S. Environmental Protection Agency